

CCD-19040

System Performance Booklet

DZ936N-#BV_3

System Overview

Description Model	Serial Number		
CCD Head	- #BV	CCD-19040	
TE Cooler performance (*)	High Ultra-hig		
Power Supply Units	PS -29	PS -40	
	~	v	
Accessories	LM-	MFL-	
Serial/Batch Number			
Other			

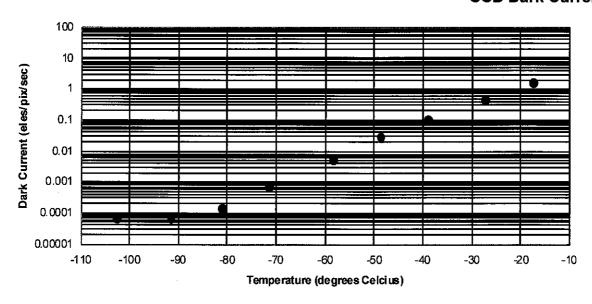
 ∇ Sensor types are defined in Table 1 using the last two letters in box Model Number.

CCD Details

Manufacturer / Model No.		Pixels	Serial Number		
E2V CCD42-40		2048x2048, 13.5μm x 13.5μm	14402-07-02		
			The state of the s		

Special Features	(*)		(~)
NIMO	To the second se	Nikon F-mount with Shutter	Y
Fringe Suppression		Custom Cables	
Shielded Anti-Blooming	, , , , , , , , , , , , , , , , , , ,		

Window Variant	(*)		(*)
VUV-UV Parallel		NUV-Enhanced Parallel	
Broadband VUV-NIR Wedged		Broadband VUV-NIR Parallel	
Broadband VIS-NIR Wedged		Broadband VIS-NIR Parallel	•
VIS-NIR Enhanced Wedged		Bose-Einstein 780nm Wedged	
None		Other	·

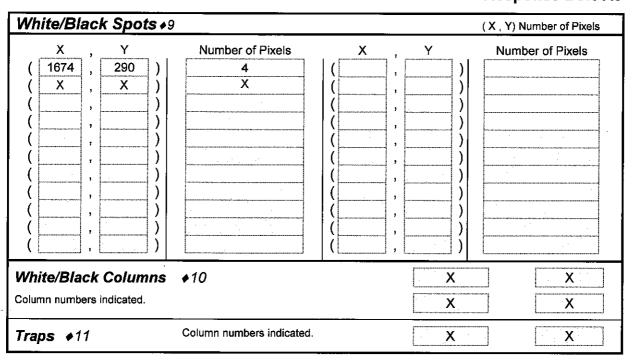


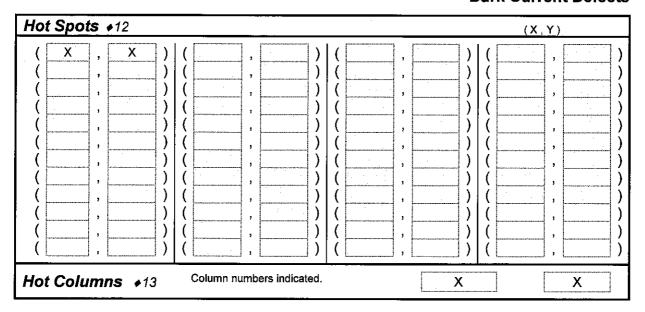
Summary of System Test Data

Readout Noise +1 and Base Mean Level +2

1		CCD Sen	sitivity •3	Single Pixel Noise		Base Mean Level		
A/D Rate	Preamp	e- per A	VD count electrons		ns rms	A/D c	A/D counts	
MHz - all 16 bit	setting	High Sensitivity Mode	High Capacity Mode	High Sensitivity Mode	High Capacity Mode	High Sensitivity Mode	High Capacity Mode	
5.0	x 1	9.9	26.1	62.6	143.0	1990	1046	
5.0	x2	4.7	13.9	41.6	95.1	2974	1159	
5.0	x4	2.5	7.2	32.4	71.8	4481	1515	
3.0	x1	4.2	16.1	21.9	88.9	1278	890	
3.0	x2	2.2	8.8	13.6	51.4	1635	1011	
3.0	x4	1.2	4.5	11.7	40.4	1925	1118	
1.0	x1	3.8	16.5	9.5	37.8	843	850	
1.0	x2	2.1	8.0	7.3	27.1	863	878	
1.0	x4	1.1	4.1	6.5	21.8	880	923	
0.05	x1	3.9	16.2	4.3	15.6	860	873	
0.05	x2	2.1	8.3	3.6	10.5	858	881	
0.05	x4	1.1	4.2	3.6	8.8	853	896	
Saturatio	n Signal per	pixel ♦14	ALACA AND ALACA	10277	3	electrons		

CCD Dark Current


Minimum Dark Current Achievable ◆4	0.000065	electrons/pixel/sec		ec
@ Sensor Temperature of ◆5	-102.6	°C	16.0	°C cooling water
CCD Dark Current Uniformity better than ◆6	0.023926	electrons/pixel/sec		ec


Linearity and Uniformity

Linearity better than ◆7	1	% over 16 bits
Response Uniformity better than ◆8	1.57	%

Response Defects

Dark Current Defects

Test Conditions

Readout Noise tested at	-90	°C with	16	°C water
Base Mean Level measured at	-90	°C with	16	°C water
Dark Current Uniformity tested at	-50	°C with	16	°C water
Blemishes tested at	-50	°C with	16	°C water

Custom Testing

Signed

System Passed for Shipping

Date

G. McCullough

2ND MARCH 2016

HEADBOARD FPGA
Hardware Version #

SOLIS
SDK
Shipping Software Version #

SOLIS
SDK
Testing Software Version #

4.28.30026.0

abla Table 1; Key code to define the meanings of the last two letters in the Model Number

	Sensor Options					
OE	Open electrode	BV	BI + VIS (550nm) optimised)			
FI	Front illuminated (FI)	BR	BI + NIR (850) optimised			
UV	FI+UV coating	BR-DD	BI + NIR +deepdepletion			
FO	FI + Fibre optic	BN	Bl with no AR coating			
FI-DD	FI + deep depletion	FK	Fast Kinetics (masked; 3011 only)			
BU2	Back Illuminated (BI) + 250nm UV optimised	KT	Kodak FI coating			
BU	BI + UV (350nm) optimised		-			

Performance Notes

- Readout Noise is measured for both single pixel (SP) and fully vertically binned (FVB) with the CCD in darkness at temperature indicated and minimum exposure time. Noise values will change with preamplifier gain selection [PAG].
- ◆2 Average electronic DC offset for CCD in darkness at temperature indicated and minimum exposure time under dark conditions measured by single pixel (SP) for imaging systems and by (FVB) for spectroscopic systems.
- ◆3 Sensitivity is calculated in photoelectrons per A/D count from measurements of the Photon Transfer Curves.
- Dark current falls exponentially with temperature. However, for a given temperature the actual dark current can vary by more than an order of magnitude from device to device. The devices are specified in terms of minimum dark current achievable rather than minimum temperature.
- Minimum temperature achieved for thermoelectric (TE) cooler set to maximum value with water cooling
- ♠6 RMS (root mean square) deviation of dark current for fully binned operation for spectroscopic cameras, or full resolution image for imaging cameras, under dark conditions at temperature indicated (pixel/column defects not included). This variation is mainly cosmetic since it is fully subtractable without significant loss of performance.
- ▶7 Linearity is measured from a plot of Counts vs. Signal over the 16 bit dynamic range. Linearity is expressed as a %age deviation from a straight line fit. This quantity is not measured on individual systems.
- RMS (root mean square) deviation from the average response of the CCD in fully binned operation for spectroscopic cameras, or full resolution image for imaging cameras, illuminated with uniform white light (defects not included).
- ♦9 White/black spots have signals >25% above/below the average (i.e >25% contrast) with uniform illumination across the sensor.
- ◆10 Columns whose signals have >10% contrast in binned operation with uniform illumination across the sensor for spectroscopic cameras, ≥ 10 black spots per column for imaging cameras.
- Pixels which absorb charge as it is clocked through the defective area. When the light source is switched off, the signal from the trap appears to drop off more slowly than the signal from the surrounding pixels.
- ♠12 A spot can be up to 3 pixels in size. For Grade A devices, hot spots are counted if they exhibit >50 times the maximum specified dark current at the test temperature indicated.
- ♠13 A column is considered defective if >10 pixels are affected, or if the column exhibits >2 times the maximum specified dark current at the test temperature indicated.
- ◆14 Saturation Signal per pixel is measured at 1MHz PreAmp x1 High Sensitivity mode