AE Ursae Majoris – a δ Scuti star in the Hertzsprung Gap

Jia-Shu Niu,^{1,2,3} Jian-Ning Fu,¹★ Yan Li,⁴ Xiao-Hu Yang,^{1,5} Weikai Zong,^{1,6,7} Hui-Fang Xue,¹ Yan-Ping Zhang,¹ Nian Liu,¹ Bing Du⁵ and Fang Zuo⁵

¹Astronomy Department, Beijing Normal University, Beijing 100875, P.R. China

²CAS Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics,

Chinese Academy of Sciences, Beijing 100190, P.R. China

³School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China

⁴National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, PO Box 110, Kunming 650011, P.R. China

⁵National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, P.R. China

⁶Université de Toulouse, UPS-OMP, IRAP, Toulouse F-31400, France

⁷CNRS, IRAP, 14 avenue Edouard Belin, F-31400 Toulouse, France

Accepted 2017 January 16. Received 2017 January 16; in original form 2016 April 5

ABSTRACT

We analyse the photometric data and spectroscopic data collected on the δ Scuti star AE Ursae Majoris (AE UMa). The fundamental and the first overtone frequencies are confirmed as $f_0 = 11.62560$ c d⁻¹ and $f_1 = 15.03124$ c d⁻¹, respectively, from the frequency content by analysing light curves over 40 nights, spanning from 2009 to 2012. Additionally, another 37 frequencies are identified as either the harmonics or the linear combinations of the fundamental and the first overtone frequencies, among which 25 are newly detected. The rate of period change of the fundamental mode is determined as $(1/P_0)(dP_0/dt) = 5.4(\pm 1.9) \times 10^{-9}$ yr⁻¹ as revealed from the O - C diagram based on the 84 newly determined times of maximum light combined with those derived from the literature. The spectroscopic data suggest that AE UMa is a Population I δ Scuti star. With these physical properties, we perform theoretical explorations based on the stellar evolution codeMESA on this target, considering that the variation of pulsation period is caused by secular evolutionary effects. We finally constrain AE UMa with physical parameters as follows: mass of $1.805 \pm 0.055 \,\mathrm{M}_{\odot}$, radius of $1.647 \pm 0.032 \times 10^{11} \,\mathrm{cm}$, luminosity of $1.381 \pm 0.048 (\log L/L_{\odot})$ and age of $1.055 \pm 0.095 \times 10^9$ yr. AE UMa can be the (Population I) δ Scuti star that locates just after the second turn-off of its evolutional track leaving the main sequence, a star in the phase of the Hertzsprung Gap with a helium core and a hydrogen-burning shell.

Key words: techniques: photometric – techniques: spectroscopic – stars: individual: AE UMa – stars: oscillations – stars: variables: δ Scuti.

1 INTRODUCTION

δ Scuti stars are a class of pulsating variable stars that lie in the classical instability strip crossing the main sequence (MS) on the Hertzsprung–Russell diagram. Their pulsations are driven by the *κ*-mechanism, which drives both the Cepheids and the RR Lyrae stars as well. The amplitudes of pulsations in δ Scuti stars are from mmag up to tenths of a magnitude, periods between 0.03 and 0.3 d (see, e.g. Niu, Fu & Zong 2013; Zong et al. 2015). These stars are found with masses between 1.5 and 2.5 M_☉, and luminosities between 10 and 50 L_☉. The general consensus shows that most (possibly all) δ Scuti stars are normal stars that evolve in the MS or the immediate post-MS stages, according to standard stellarevolution theory (see, e.g. Baglin et al. 1973; Breger 1979, 1980). Nevertheless, an observational proof of the validity of this hypothesis has not been found yet (Petersen & Christensen-Dalsgaard 1996).

The high-amplitude δ Scuti stars (hereafter HADS) are traditionally found with slow rotation, with one or two dominant radial modes with amplitudes larger than 0.1 mag, although some of them may have low-amplitude non-radial modes (e.g. Poretti 2003). SX Phoenicis (SX Phe) stars is a subgroup of HADS with low metallicity and large spatial motion (see e.g. Fu et al. 2008b). They are old Population II stars and found to be members of globular clusters (Rodríguez & López-González 2000). However, some of them have been discovered in the general star fields (Rodríguez & Breger 2001). Interestingly, pulsations in the majority of the field SX Phe variables display simple frequency spectra with short periods

^{*} E-mail: jnfu@bnu.edu.cn

Figure 1. A CCD image $(16.5 \times 16.5 \text{ arcmin}^2)$ of AE UMa $(\alpha_{2000} = 09^{\text{h}}36^{\text{m}}53^{\text{s}}, \delta_{2000} = +44^{\circ}04'00'')$ taken with the 85-cm telescope at the Xinglong station. North is down and east is to the right. AE UMa, the comparison star and the check star are marked.

CCD	Year	Month	Nights	Frames
PI BFT1024	2009	March	5	4055
	2009	May	3	516
	2010	February	2	1385
	2011	January	5	1275
	2011	February	8	4759
	2012	January	1	328
	2012	February	6	1887
PI BFT512	2012	March	5	2516
	2012	April	5	556

Table 1. Journal of photometric observations in V for AE UMa with the 85-cm telescope.

 $(\leq 0.08 \text{ d})$ and large visual peak-to-peak amplitudes $(\geq 0.1 \text{ mag}; \text{ e.g.})$ Fu et al. 2008a). The period changes of pulsations can be determined based on long-term and high-precision photometric observations of such stars, which can constrain the stellar evolutionary phase of the star (e.g. Yang, Fu & Zha 2012).

The star AE Ursae Majoris (hereafter AE UMa = HIP 47181, $\alpha_{2000} = 09^{h}36^{m}53^{s}$, $\delta_{2000} = 44^{\circ}04'01''$, $\langle V \rangle = 11.27$ mag, $P_0 = 0.0860$ d, $\Delta V = 0.10$ mag) was discovered to be a variable star by Geyer, Kippenhahn & Strohmeier (1955). The spectral type of AE UMa was classified in accordance with the type of variability by Götz & Wenzel (1961) as A9. The period of light variations was determined by Tsesevich (1973), and they classified it as a dwarf Cepheid. The beat phenomenon of the pulsations of this star was found by Szeidl (1974). AE UMa was listed as an SX Phe star

by Garcia et al. (1995). However, Hintz, Hintz & Joner (1997b) showed strong evidence against this classification and reclassified it as a normal Population I HADS. According to the measurement of Breger & Pamyatnykh (1998), AE UMa had a fast period decreasing rate of 4.8×10^{-7} yr⁻¹; hence, it should be a pre-MS star. However, there is no other evidence for this star to be a pre-MS star. Recently, both Pócs & Szeidl (2001) and Zhou (2001) analysed pulsations of the star with high-precision and longer photometric data. Their results are consistent with the outcomes of Hintz et al. (1997b): AE UMa is a Population I, post-MS δ Scuti star, but with a stable fundamental frequency and the first overtone decreasing with a rate of $\sim 10^{-8}$ yr⁻¹.

In this paper, we present a detailed study of the pulsations and the period changes of AE UMa, mainly based on both photometric observations and spectroscopic observations. Based on the observational results, we perform theoretical explorations using the stellar code MESA and constrain the physical parameters on this star. The organization of the paper is as follows: Section 2 describes the photometry and data reduction, as well as spectral results; we present the pulsation analysis of the new data in Section 3; in Section 4, the rate of period change of the fundamental pulsations is determined before we conduct calculations of the stellar models with the constraints of the stellar parameters, the frequencies and their variations in Section 5. The conclusions of this study is given in the final section.

2 OBSERVATIONS AND DATA REDUCTION

Photometric observations for AE UMa were made with the 85-cm telescope located at the Xinglong Station of NAOC between 2009

3124 J.-S. Niu et al.

Table 2. The comparison star and the check star used in the photometry of AE UMa.

Star name	<i>α</i> (2000)	δ(2000)	V	В	B-V
Object = AE Ursae Majoris Comparison = TYC 2998-1249-1 Check = TYC 2998-1166-1	$\begin{array}{c} 09^{h}36^{m}53\overset{\rm s}{.}155\\ 09^{h}37^{m}28\overset{\rm s}{.}5826\\ 09^{h}37^{m}12\overset{\rm s}{.}058\end{array}$	+44°04′00″.39 +44°01′16″.854 +43°58′20″.12	$\begin{array}{c} 11.35 \pm 0.08 \\ 11.32 \pm 0.08 \\ 12.21 \pm 0.18 \end{array}$	$\begin{array}{c} 11.54 \pm 0.06 \\ 11.82 \pm 0.08 \\ 13.10 \pm 0.30 \end{array}$	0.19 ± 0.14 0.50 ± 0.16 0.89 ± 0.48

Figure 2. Light curves of AE UMa relative to the comparison star in the V band from 2009 to 2012, observed with the 85-cm telescope. The solid curves represent the fitting with a solution up to 18 frequencies listed in Table 3.

March and 2012 May. The 85-cm telescope was equipped with a standard Johnson–Cousin–Bessel multicolour filter system and a PI1024 BFT CCD camera mounted on the primary focus (Zhou et al. 2009). The CCD had 1024×1024 pixels, corresponding

to a field of view of $16.5 \times 16.5 \operatorname{arcmin}^2$. Since 2012 March, the CCD camera has been replaced by a PI512 BFT with a larger size of pixels, which has 512×512 pixels corresponding to a field of view of $15 \times 15 \operatorname{arcmin}^2$. The observations were made through a

Figure 3. Spectroscopic observation results of AE UMa.

 Table 3.
 Parameters of AE UMa derived from spectroscopic observations.

Parameters	Values	σ
$\overline{T_{\rm eff}({\rm K})}$	7600	180
log g	4.1	0.2
[Fe/H]	-0.32	0.23
$RV (km s^{-1})$	150	27

standard Johnson V filter with the exposure time ranging from 15 to 120 s, depending on the atmospheric conditions. A journal of the new observations is listed in Table 1.

In total, 17 277 CCD frames were collected for AE UMa during 40 nights. Fig. 1 shows an image of AE UMa taken with the 85-cm telescope, where the comparison star (TYC 2998-1249-1) and the check star (TYC 2998-1166-1) are marked as well. The details of the three stars from SIMBAD (Wenger et al. 2000) are listed in Table 2.

The preliminary processing of the CCD frames (bias, dark subtraction and flat-field correction) was performed with the standard routines of CCDPROC from the IRAF software. After that, we employed the IRAF DAOPHOT package to perform aperture photometry. In order to optimize the size of the aperture, we used 12 different sizes of apertures for the data in each night and adopted the aperture that brought the minimum variance of the magnitude differences between the check star and the comparison star. The data reduction was carried out with the standard process of aperture photometry.

The light curves were then produced by computing the magnitude differences between AE UMa and the comparison star. The standard deviations of the magnitude differences between the check star and the comparison star yielded an estimation of photometry precisions, with a typical value of 0.003 mag in good observation conditions and 0.011 mag in poor cases from night to night. As there were slight zero-point shifts, we adjusted it with the fitted light curves for every month by assuming that the pulsations were stable in one month.

Fig. 2 shows the light curves of AE UMa in the Johnson V band observed with the 85-cm telescope in 2009–2012, which was used

to conduct pulsation analysis, and determination of new times of maximum light.

Spectroscopic observations of AE UMa were made with the 2.16-m telescope, which is located at the Xinglong station of NAOC, on 2016 May 21. The BFOSC low-dispersion spectrometer was employed for the observations. The used grating was G7 with a slit width of 1.8 arcsec and a line dispersion of 95 Å mm⁻¹. The centre wavelength was at 530 nm with the wavelength range of 380–680 nm.

The data were reduced with IRAF, and the obtained low-resolution spectrum is shown in Fig. 3. With the results from spectroscopic observations, we used the automated 1D parametrization pipeline LASP, which is based on the stellar spectral template library (Wu et al. 2011), to get the stellar atmospheric parameters (see Table 3). We note that T_{eff} and log g correspond to a fixed phase since we had acquired only one spectrum. These values may vary differently from phase to phase during the pulsations of AE UMa. However, the metal-to-hydrogen ratio [Fe/H] is not sensitive to the pulsations. The value of [Fe/H] is $-0.32(\pm 0.23)$, which indicates that AE UMa is possibly a Population I δ Scuti star. This is consistent with the classification of the results obtained from Hintz et al. (1997b), Pócs & Szeidl (2001) and Zhou (2001) without spectroscopic data. Hence, AE UMa can be modelled as a single star in Section 5.

3 PULSATION ANALYSIS

Pulsation analysis was performed with the light curves of AE UMa in the years 2009–2012, respectively, with the software PERIOD04 (Lenz & Breger 2005), which provides Fourier transformations of the light curves to search for significant peaks in the amplitude spectra until $150 \text{ c} \text{ d}^{-1}$, since there are no significant peaks above this frequency limit. Then, the light curves are fitted with the following formula:

$$m = m_0 + \Sigma A_i \sin(2\pi (f_i t + \phi_i)). \tag{1}$$

Table 4 lists the solutions of 37 frequencies whose signal-tonoise ratios (S/N) are higher than 4.0 (Breger et al. 1993), and the averaged noise level is calculated over the whole frequency range of $0-150 \text{ c} \text{ d}^{-1}$ (e.g. Kepler et al. 2005). The solid curves in Fig. 2

Table 4. Multifrequency solutions of the light curves of AE UMa in the V band in 2009–2012. Fre: Frequency in $c d^{-1}$. Amp: Amplitude in mmag. S/N: signal-to-noise ratio.

NO.	Marks	Fre	Amp 2009	SN	Fre	Amp 2010	SN	Fre	Amp 2011	SN	Fre	Amp 2012	SN
1	f_0	11.625 25	220.45	1078.98	11.629 44	216.36	2343.67	11.625 49	218.93	1360.27	11.625 58	218.26	1652.90
2	$2f_0$	23.250 14	74.36	373.67	23.258 88	73.25	727.33	23.250 36	73.77	467.10	23.251 08	73.57	565.07
3	f_1	15.031 09	45.29	223.73	15.011 05	43.95	464.85	15.032 01	45.00	278.92	15.031 17	45.11	343.71
4	$3f_0$	34.878 73	28.48	147.81	34.888 32	29.66	299.18	34.876 20	27.70	175.13	34.876 80	27.99	216.03
5	$f_0 + f_1$	26.658 47	29.39	148.03	26.640 49	28.76	294.84	26.656 20	29.27	184.42	26.656 65	29.72	228.20
6	$f_1 - f_0$	3.405 80	25.47	123.84	3.422 85	27.36	282.12	3.406 60	24.36	153.48	3.405 72	25.44	192.97
7	$2f_0 + f_1$	38.282 17	16.24	84.60	39.342 15	15.07	150.52	38.282 80	16.11	101.50	38.282 16	15.97	123.94
8	$4f_0$	46.512 74	12.80	67.53	46.559 00	13.02	126.33	46.501 60	12.91	82.28	46.502 33	12.99	100.78
9	$3f_0 + f_1$	49.907 05	9.31	49.30	49.940 62	10.26	97.83	49.908 20	9.14	57.64	49.907 96	9.11	71.07
10	$5f_0$	58.134 93	6.23	33.19	57.157 47	4.19	37.35	58.127 00	5.89	36.99	58.127 68	5.99	47.29
11	$2f_0 - f_1$	8.227 89	6.16	29.75	9.155 09	6.12	66.30	8.222 57	6.44	40.27	8.218 96	6.21	46.75
12	$4f_0 + f_1$	61.541 23	4.99	26.63	60.332 88	5.85	50.38	61.533 60	5.15	31.85	61.534 27	4.92	38.89
13	$f_0 + 2f_1$	41.703 15	4.33	22.78	41.775 26	3.15	31.22	41.689 40	4.16	26.42	41.688 53	4.22	32.67
14	$2f_1$	30.080 96	3.77	19.17	30.063 34	5.03	50.90	30.064 00	3.32	20.86	30.061 74	4.00	30.82
15	$6f_0$	69.769 12	3.68	19.56	69.859 13	3.51	28.13	69.752 40	3.74	23.61	69.753 22	3.29	26.59
16	$2f_1 - f_0$	19.814 09	3.45	17.17	18.227 71	3.46	36.34	19.844 20	3.04	19.00	19.845 74	3.16	24.26
17	$5f_0 + f_1$	73.163 42	3.27	17.40	74.230 48	3.31	25.21	73.159 00	3.31	20.83	73.159 80	3.42	27.88
18	$6f_0 + f_1$	84.763 12	2.15	11.31	84.773 68	2.83	19.70	84.782 67	2.21	14.30	84.785 66	2.19	18.38
19	$2f_0 + 2f_1$	53.349 33	2.07	11.00	53.693 38	1.82	16.55	53.314 80	1.66	10.51	53.312 82	2.26	17.81
20	$7f_0$	81.392 80	2.00	10.53	80.567 29	1.80	12.95	81.379 84	1.90	12.21	81.380 32	1.93	15.96
21	$7f_0 + f_1$	96.397 30	1.45	7.94	96.361 88	1.51	9.96	96.408 07	1.60	10.48	96.411 20	1.62	14.13
22	$3f_0 + 2f_1$	64.935 53	1.60	8.59	63.838 21	3.22	26.65	64.943 97	1.64	10.21	64.938 35	1.59	12.67
23	$4f_0 - f_1$	31.448 28	1.76	9.02	31.547 95	1.18	11.96	32.242 12	1.34	8.43	31.470 03	1.56	12.05
24	$2f_1 - 2f_0$	6.776 61	1.41	6.81	7.794 20	3.97	42.67	6.025 61	2.05	12.85	7.788 61	1.07	8.06
25	$2f_1 - f_0$	18.458 77	1.40	6.98	18.227 71	3.46	36.34	18.442 37	2.04	12.70	18.437 45	1.93	14.83
26	$4f_0 + 2f_1$	76.547 23	1.32	7.07	_	_	_	75.798 89	1.16	7.32	76.562 96	1.18	9.64
27	$8f_0 + f_1$	108.007 50	1.06	5.94	109.104 78	1.26	7.68	108.033 47	1.25	8.15	108.035 49	0.99	8.77
28	$8f_0$	93.038 98	1.22	6.65	_	_	_	93.012 78	0.88	5.75	93.005 86	1.18	10.13
29	$5f_0 + 2f_1$	88.205 40	1.05	5.55	_	_	_	88.185 50	1.06	6.91	88.189 75	1.05	8.95
30	$6f_0 - f_1$	54.692 65	1.20	6.36	_	_	_	53.314 80	1.66	10.51	54.724 85	0.98	7.74
31	$3f_1$	44.053 97	1.03	5.45	_	_	_	43.098 77	1.13	7.24	43.096 81	1.00	7.75
32	$10f_0 + f_1$	131.287 86	0.91	5.43	_	_	_	_	_	_	_	_	_
33	$9f_0 + f_1$	119.629 69	0.82	4.78	118.713 50	0.97	5.63	119.655 10	0.72	4.76	118.655 64	0.57	4.97
34	$6f_0 + 2f_1$	100.823 09	0.78	4.35	100.774 47	0.99	6.34	99.814 67	1.01	6.64	99.815 28	0.77	6.75
35	$7f_0 + 2f_1$	110.502 25	0.73	4.16	110.995 41	0.78	7.68	111.439 57	0.69	5.19	_	_	-
36	$9f_0$	103.665 67	0.71	4.01	104.898 39	0.90	5.74	104.864 28	0.69	4.48	103.653 46	0.67	5.94
37	$8f_0 + 2f_1$	-	-	_	-	-	_	-	-	_	123.067 60	0.54	4.82

show the fits with the frequency solutions in different years. From Table 4, one notes that the 37 frequencies are composed of the fundamental and the first overtone frequencies, their harmonics and linear combinations. As can be noted, no significant signals are detected in addition to these frequencies.

Figs 4 and 5 show, respectively, the window function and the amplitude spectra of the frequency pre-whitening process for the light curves in V in 2009.

As can be seen from Fig. 2, the constructed curves fit well the light curves observed in 2009–2012, respectively, which shows that the fundamental and the first overtone frequencies, together with their harmonics and linear combinations, can explain the pulsation behaviour of AE UMa.

To show the variations of the frequencies and amplitudes of pulsations of the star, we compare our results with those from Zhou (2001), who analysed the data for AE UMa from 1974 to 2001. By dividing the data into four segments of data sets following Zhou (2001), we resolved the pulsation parameters of the fundamental and the first overtone frequencies of AE UMa and listed them in Table 5.

4 THE O – C DIAGRAM

With the new observations from 2009 to 2012, the light curves around the light maxima were fitted with a fourth polynomial by the non-linear least-squares method. The errors in polynomial fitting are consistent with the uncertainties estimated from Monte Carlo simulations of 100 iterations for each maximum. We obtained 84 times of maximum light in the *V* band, as listed in Table 6.

In order to conduct an O - C analysis for the period change of AE UMa, we combined the new times of maximum light with those provided from the previous literature.¹ We finally obtained 461 times of maximum light, which are listed in Table 7. We discarded 17 times of maximum light, which were collected with either photograph

¹Agerer, Dahm & Hubscher (1999a), Pócs & Szeidl (2001), Pejcha, Havlik & Kral (2001), Zhou (2001), Agerer & Hubscher (2003), Hubscher (2005), Hubscher, Paschke & Walter (2005), Klingenberg, Dvorak & Robertson (2006), Hubscher, Paschke & Walter (2006), Hubscher & Walter (2007), Samolyk (2010), Hubscher (2007), Hubscher, Steinbach & Walter (2009), Hubscher et al. (2010) and Huebscher & Monninger (2011).

Figure 4. Spectral window of the light curves in V for AE UMa in 2009.

(pg) or visual (vis), with large uncertainties, compared to those collected with the CCD or photoelectric photometer (pe). We finally used 444 data points to construct the O - C (the Observed minus Calculated values) diagram. The used linear ephemeris formula is

$$HJD_{max} = 2442062.5824 + 0.08601707 E$$
(2)

following Pócs & Szeidl (2001).

A linear fit to the 444 times of maximum light yields the ephemeris formula

$$HJD_{max} = 2442062.5818(\pm 0.0002)$$

$$+ 0^{4} 086017078(\pm 0.00000002)E \tag{3}$$

with a standard deviation of $\sigma_0 = 0.00246$ d. The O - C values are listed in Table 7 as well. The O - C diagram is shown in Fig. 6.

In addition, we made a quadratic fit with a second-order polynomial:

$$HJD_{max} = 2442062.5822(\pm 0.0002)$$

$$+0.086017060(\pm 0.00000006)E$$

$$+0.5 \times 1.09(\pm 0.38) \times 10^{-13} E^2$$
 (4)

with the standard deviation of $\sigma_1 = 0.00244$ d. The quadratic terms differ from zero by a factor of 2.87σ with a significance of ~99.5 per cent, and the statistic test proposed by Pringle (1975) suggests that the small improvement in period deviation gives the quadratic term in the fit with a significance of ~99.3 per cent. From the values in equation (4), we take the period change rate of AE UMa as $(1/P_0)(dP_0/dt) = 5.4(\pm 1.9) \times 10^{-9} \text{ yr}^{-1}$, which is different from the result of $-0.35 \times 10^{-10} \text{ yr}^{-1}$ provided by Zhou (2001). This value will be used in our model calculations in the next section. However, the data may not be distributed as Gaussian random noise, and more data points need to be collected to confirm this period change.

Since the modulation frequency $f_m = f_1 - f_0$ has not been varying significantly compared with f_1 (Pócs & Szeidl 2001), one may take

the method that is used in Pócs & Szeidl (2001) and Zhou (2001) to calculate the rate of changes of the first overtone frequency. But the result shows large uncertainties. Hence, we do not consider it a credible result from our observations.

5 CONSTRAINTS FROM THE THEORETICAL MODELS

Because the order of the period change of the fundamental mode is the same as the result from our calculation in Section 4 in the post-MS phase (about 10^{-8} yr⁻¹), we assume that the result is completely from the evolutionary effects.

In this section, we describe the details of the calculation of the theoretical models of AE UMa to constrain the physical parameters for the target. Section 5.1 presents the initial input physical parameters of AE UMa for the theoretical models; Section 5.2 uses the two frequencies f_0 and f_1 to constrain the initial parameters and determines some parameters for the subsequent calculation; Section 5.3 uses two independent ways to calculate the period changes of the fundamental mode of AE UMa induced by the stellar evolutionary effects.

5.1 Physical parameters

Rodriguez et al. (1992) conducted $uvby\beta$ photoelectric photometry for AE UMa. Intrinsic values of b - y, m_1 and c_1 were derived and the stellar physical parameters were determined. The effective temperature of AE UMa varied from 8320 to 7150 K. The surface gravity log g varied from 4.16 to 3.77. The mean values obtained along the cycle were $\langle T_{\text{eff}} \rangle = 7560$ K and $\langle \log g \rangle = 3.90$, respectively. The metal abundance was estimated from δm_1 at the minimum light as [Fe/H] = -0.3. By using the log g-log P relation derived by Claret et al. (1990), Rodriguez et al. (1992) obtained the values of M = 1.80 M_☉, age = 1.3×10^9 yr and $M_{\text{bol}} = 1.76$ mag. Hintz et al. (1997b) provided the value of [Fe/H] = -0.1 according Amptitude (mmag)

Figure 5. Amplitude spectrum of the light curves in *V* for AE UMa collected in 2009, and the amplitude spectra of the frequency pre-whitening process. Note that the *y*-axis scales are optimized concerning the highest peaks in the panels.

to the relation between the P_1/P_0 ratio and the [Fe/H] value for dwarf Cepheids, which was derived from Hintz et al. (1997a). They got the [Fe/H] values ranging from -0.4 to -0.1. We listed the parameters of AE UMa from Rodriguez et al. (1992) and Hintz et al. (1997b) in Table 8. The atmospheric parameters derived from our spectrum are in good agreement with the above values, in particular, for the metal ratio [Fe/H] (comparison of Table 3 to 11). We note that in order to perform a search for the best-fitting model in a wide

 Table 5. Frequencies and amplitudes of AE UMa for different segments of observations, including the data sets of Zhou (2001) and our data. (The data of 1981–1987 have not been used due to their large scatters.)

Years	fo	f_1	A_0	A_1
1974–1977	11.625 57	15.030 97	216.9	34.1
*1981–1987	11.622 90	15.072 59	219.6	29.4
1996-1998	11.625 60	15.031 22	210.9	36.8
2000-2001	11.625 61	15.031 19	207.0	38.6
2009-2012	11.625 60	15.031 23	219.0	45.1
Mean	11.625 60	15.031 20	213.5	38.7
σ	0.000 015	0.000 123	5.5	4.7

Table 6. Newly determined times of maximum light of AE UMa. T_{max} is in HJD – 2450000. σ is the estimated uncertainty of the times of maximum light in days.

T _{max}	σ	T_{\max}	σ
4897.018 76	0.000 09	5621.110 32	0.000 17
4897.106 88	0.000 08	5621.198 60	0.000 19
4897.188 28	0.000 04	5937.398 14	0.000 12
4898.048 97	0.000 10	5961.305 07	0.000 04
4898.133 12	0.000 15	5961.390 70	0.000 10
4898.993 05	0.000 13	5964.314 79	0.000 14
4899.083 69	0.000 23	5964.40728	0.000 19
4899.170 58	0.000 13	5966.213 31	0.000 07
4900.031 82	0.000 10	5966.294 16	0.000 05
4900.112 85	0.000 08	5966.379 65	0.000 08
4900.197 79	0.000 14	5967.331 06	0.00 009
4901.057 55	0.000 27	5967.415 92	0.000 07
4970.043 14	0.000 08	5968.277 34	0.000 07
4972.107 76	0.000 24	5968.358 17	0.000 04
5230.245 53	0.000 09	5969.303 81	0.000 07
5230.33788	0.000 10	5969.395 94	0.000 14
5230.420 07	0.000 08	5997.008 00	0.000 08
5231.281 78	0.000 08	5997.090 64	0.000 04
5231.363 52	0.000 06	5997.172 95	0.000 04
5583.431 32	0.000 12	5997.263 91	0.000 10
5584.378 69	0.00018	5998.033 73	0.000 08
5585.413 21	0.000 08	5998.122 09	0.000 14
5587.394 57	0.000 09	5998.211 92	0.000 08
5588.420 08	0.000 08	5998.292 74	0.000 06
5607.952 82	0.000 18	5998.980 78	0.000 09
5608.034 84	0.000 11	5999.072 67	0.000 09
5608.118 00	0.000 11	5999.154 66	0.000 05
5608.209 86	0.000 22	5999.237 46	0.000 05
5608.295 35	0.000 12	6000.016 12	0.000 05
5608.376 32	0.000 11	6000.097 80	0.000 04
5610.359 12	0.000 10	6000.187 42	0.000 09
5611.387 74	0.000 16	6000.276 18	0.000 06
5612.246 92	0.000 14	6001.045 94	0.000 06
5612.339 17	0.000 22	6001.136 82	0.000 06
5613.197 99	0.000 21	6001.2185 7	0.000 03
5616.980 03	0.000 11	6001.302 28	0.000 06
5617.070 53	0.000 08	6062.031 20	0.000 05
5617.151 98	0.000 05	6063.069 10	0.000 15
5617.235 83	0.000 06	6064.013 67	0.000 08
5617.328 10	0.000 10	6064.094 79	0.000 08
5620.077 17	0.000 10	6065.041 89	0.000 09
5620.160 24	0.000 17	6068.057 99	0.000 21

parametric range, we used 3σ as the intervals of constraints for our theoretical calculation as follows.

5.2 Constraints from f_0 and f_1

MESA is a suite of open-source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics (Paxton et al. 2011, 2013). The 1D stellar evolution module, MESA star, combines many of the numerical and physics modules for simulations of a wide range of stellar evolution scenarios ranging from very low mass to massive stars, including advanced evolutionary phases. The '*astero*' extension to the MESA star implements an integrated approach that passes results automatically between the MESA star and the new MESA module based on the adiabatic code ADIPLS (Christensen-Dalsgaard 2008).

In MESA version 6208, the *astero* extension enables the calculation of selected pulsation frequencies by the MESA star during the evolution of the model. This allows fitting to the observations that can include spectroscopic constraints (e.g. [Fe/H], log g and $T_{\rm eff}$), asteroseismic constraints, a large frequency separation ($\Delta \nu$) and the frequency of maximum power ($\nu_{\rm max}$), and even individual frequencies observed. For the automated χ^2 minimization, *astero* will evolve a pre-MS model from a user-defined starting point, and find the best match along that single evolutionary track. The code then recalculates the track, again initiated at the pre-MS, with different initial parameters such as mass, chemical composition, mixinglength parameter and overshooting, and repeats until the minimum χ^2 is found.

We used the scan-grid mode to minimize the χ^2 for each model, which helps to compact the intervals of the physical parameters.

Every model of evolution starts with creating a pre-MS model by specifying the mass, *M*, at a uniform composition. The equation-of-state tables are constructed from the 2005 update of the OPAL EOS (Rogers & Nayfonov 2002) and SCVH tables (Saumon, Chabrier & van Horn 1995). The MESA opacity tables, which are derived from Type 1 and 2 OPAL tables (Iglesias & Rogers 1993, 1996), and tables from OP (Seaton 2005; Ferguson et al. 2005), cover a large range of $2.7 \le \log T \le 10.3$ and $-8 \le \log R \le 8$. The hydrogen burning reaction rates in the calculations are from Bahcall (1997, 2002).

The MESA star treats convective mixing as a time-dependent, diffusive process with a diffusion coefficient D_{OV} defined as

$$D_{\rm OV} = D_{\rm conv,0} \exp\left(-\frac{2z}{f\lambda_{\rm P,0}}\right),\tag{5}$$

where $\lambda_{P,0}$ is the pressure scaleheight at that location, *z* is the distance in the radiative layer away from that location and *f* is an adjustable parameter (Herwig 2000).

In all our subsequent calculations, the used opacity and EOS tables are $eos_file_prefix = mesa$, $kappa_file_prefix = gs98$ and $kappa_lowT_prefix = lowT_Freedman11$. The atmosphere model is the which_atm_option = photosphere_tables photosphere.

The mixing-length parameter α_{MLT} was chosen as 1.89, since the choice has actually a very small effect on our models (Yang et al. 2012). The convective overshooting parameter $f_{ov} = 0.015$ was the initial value of MESA (version 6208). The effects of rotation on the evolutionary period changes are disregarded, concerning AE UMa as an HADS with very slow rotation (Breger 2000). Table 9 lists the parameters of the grid of model to search for f_0 and f_1 of AE UMa. The diffusion effects were not taken into account because of its negligible results on the models with mass in the range of

Table 7. Times of maximum light and O – C values of AE UMa. T_{max} is the observed times of maximum light in HJD – 2400000. *E*: cycle number. O – C is in days. Det: detector (pg = photograph, vis = visual, and pe = photoelectric photometer). S: source [(1) Tsesevich (1973); (2) Filatov (1960); (3) Pócs & Szeidl (2001); (4) Broglia & Conconi (1975); (5) Braune, Huebscher & Mundry (1979); (6) Braune & Mundry (1982); (7) Huebscher, Lichtenknecker & Mundry (1985); (8) Rodriguez et al. (1992); (9) Hübscher, Agerer & Wunder (1992); (10) Hintz et al. (1997b); (11) Agerer, Dahm & Hubscher (1999b); (12) Agerer et al. (1999a); (13) Pejcha et al. (2001); (14) Zhou (2001); (15) Agerer & Hubscher (2003); (16) Hubscher (2005); (17) Hubscher et al. (2005); (18) Klingenberg et al. (2006); (19) Hubscher et al. (2006); (20) Hubscher & Walter (2007); (21) Samolyk (2010); (22) Hubscher (2007); (23) Hubscher et al. (2009); (24) Hubscher et al. (2010); (25) Huebscher & Monninger (2011); and (26) this work.]. Points not used in the O – C analysis are marked with an asterisk.

NO.	$T_{\rm max}$	Ε	O – C	Det	S	NO.	$T_{\rm max}$	Ε	0 – C	Det	S
1	28 632.398	-156 133	_	pg	(1)*	58	43 162.5708	12 788	0.002 457	pe	(3)
2	31 875.122	-118434	-	pg	(2)*	59	44 633.4626	29 888	0.002 451	pe	(3)
3	33 379.256	-100948	-	pg	(2)*	60	44 633.5440	29 889	$-0.002\ 166$	pe	(3)
4	35 601.188	-75 117	-	pg	(2)*	61	44 633.6309	29 890	$-0.001\ 283$	pe	(3)
5	35 604.337	$-75\ 080$	_	vis	$(1)^{*}$	62	44 634.4046	29 899	-0.001 737	pe	(3)
6	35 607.173	-75047	_	pg	(2)*	63	44 634.4902	29 900	-0.002 154	pe	(3)
7	35 981.202	-70699	_	pg	(2)*	64	44 634.5810	29 901	0.002 629	pe	(3)
8	38 106.402	-45 992	_	vis	(1)*	65	44 692.4709	30 574	0.003 043	pe	(3)
9	41 059.368	-11 662	_	vis	(1)*	66	44 696.343	30 619	-	vis	(6)*
10	41 773.223	-3363	_	vis	(1)*	67	44 696.426	30 620	_	vis	(6)*
11	42 062.5832	0	0.001 039	pe	(3)	68	44 696.520	30 621	_	vis	(6)*
12	42 065,5959	35	0.003 142	pe	(4)	69	45 355,4902	38 282	0.002 786	pe	(3)
13	42 065.6778	36	-0.000975	ne	(4)	70	45 355 5727	38 283	-0.000731	ne	(3)
14	42.068.3432	67	-0.002104	pe	(4)	71	45 382 3228	38 594	-0.001.939	ne	(3)
15	42 068 4302	68	-0.001121	ne	(4)	72	45 382 4104	38 595	-0.000.356	ne	(3)
16	42 068 5203	69	0.002.962	pe	(4) (4)	73	45 382 4997	38 596	0.002.927	ne	(3)
17	42 068 6029	70	-0.000/155	pe	(4)	74	45 382 5807	38 597	_0.002.090	pe	(3)
19	42 008.0029	70	-0.000 433	pe	(4)	74	45 562.5807	47 104	-0.002 090	vie	(3)
10	42 060 2808	71 70	0.002.272	pe	(4)	75	40 114.332	51 221	-	V15	$(7)^{1}$
19	42 009.3608	79	0.003 292	pe	(4)	70	40 408.4001	51 221	-0.002 180	pe	(3)
20	42 069.4651	80	0.001 574	pe	(4)	70	40 408.5408	51 222	-0.001 497	pe	(3)
21	42 069.5473	81	-0.002 243	pe	(4)	/8	40 855.0279	55 722	0.002 /80	pe	(8)
22	42 069.6363	82	0.000 740	pe	(4)	79	46 856.5729	55 733	0.001 592	pe	(8)
23	42 086.4965	278	0.001 597	pe	(4)	80	46 856.6561	55 734	-0.001 225	pe	(8)
24	42 086.5787	279	-0.002 221	pe	(4)	81	46 857.6017	55 745	-0.001 812	pe	(8)
25	42 087.4390	289	-0.002091	pe	(4)	82	46 857.6925	55 746	0.002 970	pe	(8)
26	42 087.5263	290	$-0.000\ 808$	pe	(4)	83	46 858.6382	55 757	0.002 483	pe	(8)
27	42 087.6155	291	0.002 375	pe	(4)	84	46 859.6666	55 769	$-0.001\ 322$	pe	(8)
28	42 095.5298	383	0.003 105	pe	(3)	85	46 878.4181	55 987	-0.001544	pe	(8)
29	42 095.6123	384	$-0.000\ 412$	pe	(3)	86	46 878.5064	55 988	0.000 739	pe	(8)
30	42 103.3513	474	-0.002947	pe	(4)	87	46 878.5946	55 989	0.002 922	pe	(8)
31	42 106.4523	510	0.001 439	pe	(3)	88	46 884.5262	56 058	-0.000656	pe	(8)
32	42 119.5252	662	-0.000255	pe	(3)	89	46 884.6117	56 059	-0.001 173	pe	(8)
33	42 121.5025	685	-0.001347	pe	(3)	90	46 886.5907	56 082	-0.000566	pe	(8)
34	42 122.3628	695	-0.001 218	pe	(4)	91	48 683.317	76 970	_	vis	(9)*
35	42 122.4484	696	-0.001 635	pe	(4)	92	50 151.4564	94 038	0.000 981	pe	(3)
36	42 128.2968	764	-0.002395	pe	(3)	93	50 151.5384	94 039	-0.003036	pe	(3)
37	42 128.3872	765	0.001 988	pe	(3)	94	50 152.3170	94 048	0.001 411	pe	(3)
38	42 128.4727	766	0.001 471	pe	(3)	95	50 152.4862	94 050	-0.001 424	pe	(3)
39	42 128.5557	767	-0.001 546	pe	(3)	96	50 152.5756	94 051	0.001 959	pe	(3)
40	42 133,4627	824	0.002 482	pe	(3)	97	50 458.8815	97 612	0.001 034	CCD	(10)
41	42 133.5442	825	-0.002035	ne	(3)	98	50 458,9636	97 613	-0.002883	CCD	(10)
42	42 134 4055	835	-0.000906	pe	(3)	99	50 459 8240	97 623	-0.002654	CCD	(10)
43	42 147 3933	986	-0.001.682	ne	(3)	100	50 459 9113	97 624	-0.001.371	CCD	(10)
13	12 148 4295	008	0.002.313	pe	(3)	101	50 467 7388	97 715	-0.001.425	CCD	(10)
15	42 148 5117	000	-0.002513	pe	(3)	102	50 467 8236	97 716	-0.002.642	CCD	(10)
45	42 140.5117	1126	0.000 871	pe	(3)	102	50 400 3607	07 078	0.002.042	ne	(10)
40	42 159.4505	1120	0.001.263	pe	(3)	103	50 505 6607	97 976	-0.002 018	CCD	(10)
47	42 101.4145	1149	-0.001 203	pe	(3)	104	50 505 7505	98 150	-0.004 038	CCD	(10)
40	42 435.3500	4545	0.000 899	pe	(3)	105	50 505 8461	98 157	-0.000 275	CCD	(10)
49 50	42 433.013/	4340	-0.002 018	pe	(3)	100	50 516 7676	90 130	0.000 308	CCD	(10)
50	42 460.4989	4026	0.001 817	pe	(3)	107	50 516.7676	98 285	-0.002 362	CCD	(10)
51	42 532.407	5462	-	V1S	(5)*	108	50 554.4432	98/23	-0.002 243	pe	(3)
52	42 830.6280	8929	-0.000 499	pe	(3)	109	50 813.3550	101 733	-0.001 860	pe	(3)
53	42 837.5120	9009	0.002 136	pe	(3)	110	50 813.4408	101 734	-0.002077	pe	(3)
54	42 838.4591	9020	0.003 049	pe	(3)	111	50 813.6151	101 736	0.000 189	pe	(3)
55	42 866.496	9346	-	vis	(5)*	112	50 813.6985	101 737	$-0.002\ 428$	pe	(3)
56	42 869.3377	9379	0.001 523	pe	(3)	113	50 848.4540	102 141	0.002 170	pe	(3)
57	42 869.4205	9380	-0.001694	pe	(3)	114	50 848.5391	102 142	0.001 253	pe	(3)

 Table 7
 - continued

NO.	T _{max}	Ε	0 – C	Det	S	NO.	T_{\max}	Ε	0 – C	Det	S
115	50 848.6212	102 143	-0.002 664	pe	(3)	179	51 942.2473	114 858	0.002 234	CCD	(14)
116	50 849.4815	102 153	-0.002535	pe	(3)	180	51 942.3311	114 859	0.000 017	CCD	(14)
117	50 849.5688	102 154	$-0.001\ 252$	pe	(3)	181	51 942.4141	119 265	$-0.003\ 000$	CCD	(15)
118	50 862.3840	102 303	-0.002597	CCD	(13)	182	52 321.4089	119 846	0.000 521	CCD	(15)
119	50 862.3840	102 418	-0.002597	pe	(3)	183	52 371.3836	123 496	-0.000706	CCD	(15)
120	50 872.2809	102 419	0.002 339	pe	(3)	184	52 685.3460	123 497	-0.000 673	CCD	(15)
121	50 872.3634	102 420	$-0.001\ 178$	pe	(3)	185	52 685.4369	124 020	0.004 210	CCD	(15)
122	50 872.4481	102 421	-0.002 496	pe	(3)	186	52 730.4187	124 124	-0.000 926	CCD	(15)
123	50 872.5394	102 733	0.002 787	pe	(3)	187	52 739.3617	124 195	-0.003 703	CCD	(16)
124	50 899.3729	102 734	-0.001 042	pe	(3)	188	52 745.4702	126 928	-0.002 416	CCD	(17)
125	50 899.4570	102 767	-0.002 959	pe	(3)	189	52 980.5608	126 929	0.003 484	CCD	(17)
120	50 902.2976	102 768	-0.000 923	pe	(3)	190	52 980.0421	120 930	-0.001 255	CCD	(17)
127	50 902.3819	102 779	$-0.002\ 640$	pe	(3)	191	52 980.7279	127 195	-0.001 451	CCD	(10)
120	50 903.5521	102 780	0.001 572	pe	(3)	192	52028 2042	127 465	-0.000 779	CCD	(10)
129	50 903.4192	102 /81	0.002 433	CCD	(3)	195	53028.2942	127 485	-0.002 000	CCD	(10)
130	51 260 5080	107 108	0.002 550	CCD	(13)	194	53028.3871	127 485	0.004 285	CCD	(10)
131	51 283 4410	107 198	0.002 330	CCD	(13)	195	53028.4705	127 480	-0.002651	CCD	(10)
132	51 283 5250	107 200	-0.000782	CCD	(13)	197	53028.6420	127 961	0.001.132	CCD	(10)
134	51 283 6090	107 604	-0.001233 -0.003252	CCD	(13)	198	53069 4119	127 962	-0.001.068	CCD	(16)
135	5 1318 3630	107 605	-0.000154	CCD	(13)	199	53069 5029	127 902	0.003.915	CCD	(16)
136	51 318 4460	110 972	-0.003171	CCD	(13)	200	53070 4493	127 974	0.004 127	CCD	(16)
137	51 608.0716	110 973	0.002 908	CCD	(14)	200	53 070.5320	128 205	0.000 810	CCD	(16)
138	51 608.1577	110 974	0.002 991	CCD	(14)	202	53 090.4053	128 251	0.004 162	CCD	(16)
139	51 608.2395	110 975	-0.001226	CCD	(14)	203	53 094.3575	128 437	-0.000424	CCD	(19)
140	51 608.3264	110 983	-0.000 343	CCD	(14)	204	53 110.3619	131 915	0.004 798	CCD	(18)
141	51 609.0186	110 984	0.003 720	CCD	(14)	205	53 409.5286	131 916	0.004 064	CCD	(18)
142	51 609.1006	110 985	-0.000297	CCD	(14)	206	53 409.6108	131 917	0.000 247	CCD	(18)
143	51 609.1865	110 986	-0.000414	CCD	(14)	207	53 409.6940	132 122	-0.002570	CCD	(19)
144	51 609.2770	110 987	0.004 069	CCD	(14)	208	53 427.3272	132 123	-0.002873	CCD	(19)
145	51 609.3583	110 995	-0.000648	CCD	(14)	209	53 427.4181	132 124	0.002 010	CCD	(19)
146	51 610.0450	111 006	$-0.002\ 085$	CCD	(14)	210	53 427.5031	132 402	0.000 993	CCD	(17)
147	51 610.9969	111 007	0.003 627	CCD	(14)	211	53 451.4136	132 403	$-0.00\ 1258$	CCD	(17)
148	51 611.0821	111 008	0.002 810	CCD	(14)	212	53 451.5042	132 785	0.003 325	CCD	(17)
149	51 611.1627	111 018	$-0.002\ 607$	CCD	(14)	213	53 484.3616	136 052	0.002 197	CCD	(20)
150	51 612.0246	111 019	$-0.000\ 878$	CCD	(14)	214	53 765.3803	136 053	0.003 066	CCD	(20)
151	51 612.1090	111 020	-0.002495	CCD	(14)	215	53 765.4660	136 054	0.002 749	CCD	(20)
152	51 612.2010	111 021	0.003 488	CCD	(14)	216	53 765.5462	136 063	-0.003 068	CCD	(20)
153	51 612.2846	111 022	0.001 071	CCD	(14)	217	53 766.3278	136 064	0.004 378	CCD	(20)
154	51 612.3704	111 029	0.000 854	CCD	(14)	218	53 766.4079	136 065	-0.001 539	CCD	(20)
155	51 612.9692	111 030	-0.002 466	CCD	(14)	219	53 766.4943	136 066	-0.001 156	CCD	(20)
150	51 613.0609	111 031	0.003 217	CCD	(14)	220	53766.5849	136 389	0.003 427	CCD	(18)
157	51 613.1453	111 032	0.001 600	CCD	(14)	221	53 /94.3019	136 400	-0.003 093	CCD	(18)
150	51 612 2156	111 055	-0.002 117	CCD	(14)	222	52 705 2008	130 401	0.000 519	CCD	(10)
159	51 615 0241	111 055	-0.000 134	CCD	(14)	225	52 827 6570	130 770	0.002 002	CCD	(10)
161	51 615 1260	111 054	-0.001 970	CCD	(14)	224	54 079 7666	139 707	-0.003.098	CCD	(21)
162	51 615 2008	111 055	0.001.690	CCD	(14)	225	54 079 8580	139 700	0.002.285	CCD	(21)
163	51 615 2919	111 064	-0.001.000	CCD	(14)	220	54 079 9437	139 973	0.002.203	CCD	(21)
164	51 615 9855	111.065	0.003.236	CCD	(11)	228	54 102 6471	139 974	-0.003144	CCD	(21)
165	51 616 0705	111 066	0.002.219	CCD	(14)	229	54 102 7365	139 975	0.000.238	CCD	(21)
166	51 616.1526	111 067	-0.001698	CCD	(14)	230	54 102.8254	139 985	0.003 121	CCD	(21)
167	51 616.2389	114 706	-0.001415	CCD	(14)	231	54 103.6849	139 986	0.002 450	CCD	(21)
168	51 929.2556	114 707	-0.000 886	CCD	(14)	232	54 103.7677	139 997	-0.000 767	CCD	(21)
169	51 929.3464	114 717	0.003 897	CCD	(14)	233	54 104.7117	140 031	-0.002955	CCD	(21)
170	51 930.2058	114 718	0.003 126	CCD	(14)	234	54 107.6358	140 032	$-0.003\ 436$	CCD	(21)
171	51 930.2885	114 719	-0.000 191	CCD	(14)	235	54 107.7251	140 033	$-0.000\ 153$	CCD	(21)
172	51 930.3721	114 729	$-0.002\ 608$	CCD	(14)	236	54 107.8138	140 034	0.002 530	CCD	(21)
173	51 931.2315	114 730	-0.003 379	CCD	(14)	237	54 107.8944	140 067	$-0.002\ 887$	CCD	(21)
174	51 931.3203	114 845	-0.000596	CCD	(14)	238	54 110.7388	140 068	0.002 949	CCD	(21)
175	51 941.2102	114 846	$-0.002\ 661$	CCD	(14)	239	54 110.8207	140 069	$-0.001\ 168$	CCD	(21)
176	51 941.2979	114 847	$-0.000\ 978$	CCD	(14)	240	54 110.9051	140 070	-0.002785	CCD	(21)
177	51 941.3881	114 856	0.003 205	CCD	(14)	241	54 110.9977	140 241	0.003 798	CCD	(21)
178	51 942.1562	114 857	-0.002849	CCD	(14)	242	54 125.7056	140 242	0.002 775	CCD	(21)

3132 *J.-S. Niu et al.*

 Table 7 – continued

NO.	$T_{\rm max}$	Ε	0 – C	Det	S	NO.	$T_{\rm max}$	Ε	0 – C	Det	S
243	54 125.7883	140 243	-0.000542	CCD	(21)	307	54 770.8336	147 741	0.002 589	CCD	(21)
244	54 125.8716	140 244	$-0.003\ 259$	CCD	(21)	308	54 770.9152	147 742	-0.001 828	CCD	(21)
245	54 125.9649	140 309	0.004 024	CCD	(21)	309	54 781.8384	147 869	-0.002798	CCD	(21)
246	54 131.5550	140 310	0.003 013	CCD	(21)	310	54 781.9301	147 870	0.002 884	CCD	(21)
247	54 131.6392	140 311	0.001 196	CCD	(21)	311	54 788.8080	147 950	-0.000583	CCD	(21)
248	54 131.7212	140 312	$-0.002\ 821$	CCD	(21)	312	54 788.8912	147 951	$-0.003\ 400$	CCD	(21)
249	54 131.8106	140 313	0.000 562	CCD	(21)	313	54 788.9833	147 952	0.002 683	CCD	(21)
250	54 131.8989	140 367	0.002 845	CCD	(21)	314	54 791.7333	147 984	0.000 136	CCD	(21)
251	54 136.5446	140 368	0.003 622	CCD	(21)	315	54 791.8157	147 985	$-0.003\ 481$	CCD	(21)
252	54 136.6275	140 369	0.000 505	CCD	(21)	316	54 791.9080	147 986	0.002 802	CCD	(21)
253	54 136.7104	140 370	$-0.002\ 612$	CCD	(21)	317	54 791.9938	147 987	0.002 585	CCD	(21)
254	54 136.7998	140 371	0.000 771	CCD	(21)	318	54 807.8222	148 171	0.003 840	CCD	(21)
255	54 136.8882	140 372	0.003 154	CCD	(21)	319	54807.9032	148 172	$-0.001\ 177$	CCD	(21)
256	54 136.9697	140 380	-0.001 364	CCD	(21)	320	54 807.9866	148 173	-0.003795	CCD	(21)
257	54 137.6581	140 381	$-0.001\ 100$	CCD	(21)	321	54 816.6793	148 274	0.001 179	CCD	(21)
258	54 137.7491	140 382	0.003 883	CCD	(21)	322	54 816.7612	148 275	-0.002938	CCD	(21)
259	54 137.8311	140 404	$-0.000\ 134$	CCD	(21)	323	54 816.8501	148 276	$-0.000\ 055$	CCD	(21)
260	54 139.7226	140 405	$-0.001\ 010$	CCD	(21)	324	54 816.9399	148 277	0.003 728	CCD	(21)
261	54 139.8124	140 406	0.002 772	CCD	(21)	325	54 837.6637	148 518	-0.002591	CCD	(21)
262	54 139.8942	140 428	$-0.001\ 445$	CCD	(21)	326	54 837.7565	14 8519	0.004 191	CCD	(21)
263	54 141.7876	140 429	-0.000421	CCD	(21)	327	54 843.6886	148 588	0.001 112	CCD	(21)
264	54 141.8768	140 430	0.002 762	CCD	(21)	328	54 843.7704	148 589	$-0.003\ 105$	CCD	(21)
265	54 141.9575	140 554	-0.002555	CCD	(21)	329	54 843.8567	148 590	$-0.002\ 822$	CCD	(21)
266	54 152.6241	140 565	-0.002 074	CCD	(21)	330	54 843.9494	148 591	0.003 861	CCD	(21)
267	54 153.5746	140 578	0.002 238	CCD	(21)	331	54 846.6137	148 622	0.001 631	CCD	(21)
268	54 154.6883	140 579	-0.002 284	CCD	(21)	332	54 846.6960	148 623	-0.002 086	CCD	(21)
269	54 154.7800	140 580	0.003 399	CCD	(21)	333	54 847.7336	148 635	0.003 309	CCD	(21)
270	54 154.8618	140 773	-0.000 818	CCD	(22)	334	54 847.8164	148 636	0.000 092	CCD	(21)
271	54 171.4664	140 808	0.002 483	CCD	(22)	335	54 847.8988	148 637	-0.003 525	CCD	(21)
272	54 175.4206	140 819	-0.000 103	CCD	(22)	336	54 855.6469	148 727	0.003 036	CCD	(21)
273	54 196.4976	141 064	0.00 2710	CCD	(22)	337	54 855.7316	148 728	0.001 /19	CCD	(21)
274	54 197.3390	141 074	0.003 939	CCD	(22)	220	54 855.8119	148 729	-0.003 998	CCD	(21)
215	54 197.4402	141 075	-0.000 8/8	CCD	(22)	240	54 855.9025	148 / 30	0.000 385	CCD	(21)
270	54 198.3830	141 080	-0.002 200	CCD	(22)	241	54 804.5875	140 031	-0.002 341	CCD	(21)
277	54 202 4288	141 087	0.000 817	CCD	(22)	341	54 864 7640	140 032	-0.003 238	CCD	(21)
278	54 /1/ 8030	141 155	0.00 1615	CCD	(22) (21)	3/13	54 864 8477	148 837	0.000 224	CCD	(21)
280	54 414 9804	143 604	0.002.098	CCD	(21) (21)	344	54 864 9296	148 835	-0.000007	CCD	(21)
281	54 417 7271	143 636	-0.002.000	CCD	(21) (21)	345	54 868 6346	148 878	0.002 155	CCD	(21)
282	54 417 9058	143 638	0.002.917	CCD	(21)	346	54 868 7166	148 879	-0.002133	CCD	(21)
283	54 417 9856	143 639	-0.002.300	CCD	(21)	347	54868 8033	148 880	-0.001.002	CCD	(21)
284	54 440.6958	143 903	-0.001612	CCD	(21)	348	54 868.8941	148 881	0.003 604	CCD	(21)
285	54 442.7619	143 927	0.000 078	CCD	(21)	349	54 878.6935	148 995	-0.002945	CCD	(21)
286	54 442.8516	143 928	0.003761	CCD	(21)	350	54 878.7811	148 996	-0.001362	CCD	(21)
287	54 442.9342	143 929	0.000 344	CCD	(21)	351	54 878.8721	148 997	0.003 621	CCD	(21)
288	54 451.6243	144 030	0.002 717	CCD	(21)	352	54894.4412	149 178	0.003 628	CCD	(24)
289	54 460.6513	144 135	-0.002077	CCD	(21)	353	54894.5227	149 179	-0.000890	CCD	(24)
290	54 460.7433	144 136	0.003 906	CCD	(21)	354	54 894.6071	149 180	-0.002507	CCD	(24)
291	54 460.8247	144 137	-0.000712	CCD	(21)	355	54 897.0188	149 208	0.000 058	CCD	(26)
292	54 460.9089	144 138	-0.002529	CCD	(21)	356	54 897.1069	149 209	0.004 345	CCD	(26)
293	54 467.7955	144 218	0.002 704	CCD	(21)	357	54 897.1883	149 210	-0.000972	CCD	(26)
294	54 468.7392	144 229	0.000 216	CCD	(21)	358	54 898.0490	149 220	$-0.003\ 829$	CCD	(26)
295	54 468.8220	144 230	$-0.003\ 001$	CCD	(21)	359	54 898.1331	149 221	0.004 153	CCD	(26)
296	54 468.9120	144 231	0.000 982	CCD	(21)	360	54 898.3084	149 223	$-0.001\ 064$	CCD	(24)
297	54 469.6815	144 240	$-0.003\ 672$	CCD	(21)	361	54 898.9930	149 231	$-0.003\ 252$	CCD	(26)
298	54 469.7701	144 241	$-0.001\ 089$	CCD	(21)	362	54 899.0837	149 232	0.003 172	CCD	(26)
299	54 469.8603	144 242	0.003 094	CCD	(21)	363	54 899.1706	149 233	-0.000545	CCD	(26)
300	54 469.9414	144 243	-0.001 823	CCD	(21)	364	54 900.0318	149 243	0.002 679	CCD	(26)
301	54 506.5887	144 669	0.002 196	CCD	(23)	365	54 900.1128	149 244	0.002 702	CCD	(26)
302	54 512.5199	144 738	-0.001 784	CCD	(23)	366	54 900.1978	149 245	-0.002 250	CCD	(26)
303	54 513.4650	144 749	-0.002 872	CCD	(23)	367	54 901.0575	149 255	0.004 333	CCD	(26)
304	54 513.5559	144 750	0.002 011	CCD	(23)	368	54904.4199	149 294	0.001 172	CCD	(24)
305	54 524.4815	144 877	0.003 441	CCD	(23)	369	54 904.5006	149 295	-0.003 733	CCD	(24)
306	54 769.8859	147 730	0.001 077	CCD	(21)	370	54 909.3147	149 351	0.000 862	CCD	(24)

 Table 7
 - continued

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CCD CCD CCD	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CCD CCD	(26)
373 54 910.4335 149 364 -0.003 443 CCD (24) 419 55 620.1602 157 615 -0.003 590 374 54 912.3323 149 386 0.000 770 CCD (24) 420 55 621.1103 157 626 0.000 322 375 54 912.4146 149 387 -0.003 835 CCD (24) 421 55 621.1086 157 627 0.002 604 376 54 924.3742 149 526 0.003 777 CCD (24) 422 55 937.3981 161 303 0.003 264 377 54 970.0431 150 057 0.000 360 CCD (26) 423 55 961.3051 161 581 -0.002 906 378 54 972.1078 150 081 0.000 715 CCD (26) 424 55 961.3097 161 582 -0.002 906 379 55 230.2455 153 082 0.002 798 CCD (26) 425 55 964.3148 161 616 -0.003 387 380 55 230.3379 153 083 -0.001 819 CCD (26) 426 55 966.2133 161 617 0.003 096 381 55230.4201	CCD	(26)
374 54 912.3323 149 386 0.000 770 CCD (24) 420 55 621.1103 157 626 0.000 322 375 54 912.4146 149 387 -0.003 835 CCD (24) 421 55 621.1103 157 626 0.002 604 376 54 924.3742 149 526 0.003 777 CCD (24) 422 55 937.3981 161 303 0.003 264 377 54 970.0431 150 057 0.000 360 CCD (26) 423 55 961.3051 161 581 -0.002 489 378 54 972.1078 150 081 0.000 715 CCD (26) 424 55 961.3051 161 582 -0.002 906 379 55 230.2455 153 082 0.002 798 CCD (26) 425 55 964.3148 161 616 -0.003 387 380 55 230.3379 153 083 -0.001 819 CCD (26) 426 55 964.4073 161 617 0.003 096 381 55230.4201 153 084 -0.001 290 CCD (26) 427 55 966.2133 161 638 0.002 737		(26)
375 54 912.4146 149 387 -0.003 835 CCD (24) 421 55 621.1986 157 627 0.002 604 376 54 924.3742 149 526 0.003 777 CCD (24) 422 55 937.3981 161 303 0.003 264 377 54 970.0431 150 057 0.000 360 CCD (26) 423 55 961.3051 161 581 -0.002 489 378 54 972.1078 150 081 0.000 715 CCD (26) 424 55 961.3051 161 582 -0.002 906 379 55 230.2455 153 082 0.002 798 CCD (26) 425 55 964.3148 161 616 -0.003 387 380 55 230.3379 153 083 -0.001 819 CCD (26) 426 55 964.4073 161 617 0.003 096 381 55230.4201 153 084 -0.001 290 CCD (26) 427 55 966.2133 161 638 0.002 737	CCD	(26)
376 54 924.3742 149 526 0.003 777 CCD (24) 422 55 937.3981 161 303 0.003 264 377 54 970.0431 150 057 0.000 360 CCD (26) 423 55 961.3051 161 581 -0.002 489 378 54 972.1078 150 081 0.000 715 CCD (26) 424 55 961.3051 161 582 -0.002 906 379 55 230.2455 153 082 0.002 798 CCD (26) 425 55 964.3148 161 616 -0.003 387 380 55 230.3379 153 083 -0.001 819 CCD (26) 426 55 964.4073 161 617 0.003 096 381 55230.4201 153 084 -0.001 290 CCD (26) 427 55 966.2133 161 638 0.002 737 282 55 230.3379 153 084 -0.001 290 CCD (26) 427 55 966.2133 161 638 0.002 737	CCD	(26)
377 54 970.0431 150 057 0.000 360 CCD (26) 423 55 961.3051 161 581 -0.002 489 378 54 972.1078 150 081 0.000 715 CCD (26) 424 55 961.3051 161 582 -0.002 906 379 55 230.2455 153 082 0.002 798 CCD (26) 425 55 964.3148 161 616 -0.003 387 380 55 230.3379 153 083 -0.001 819 CCD (26) 426 55 964.4073 161 617 0.003 096 381 55230.4201 153 084 -0.001 290 CCD (26) 427 55 966.2133 161 638 0.002 737	CCD	(26)
378 54 972.1078 150 081 0.000 715 CCD (26) 424 55 961.3907 161 582 -0.002 906 379 55 230.2455 153 082 0.002 798 CCD (26) 425 55 964.3148 161 616 -0.003 387 380 55 230.3379 153 083 -0.001 819 CCD (26) 426 55 964.4073 161 617 0.003 096 381 55230.4201 153 084 -0.001 290 CCD (26) 427 55 966.2133 161 638 0.002 737 282 55 230.4201 153 084 -0.001 290 CCD (26) 427 55 966.2133 161 638 0.002 737	CCD	(26)
379 55 230.2455 153 082 0.002 798 CCD (26) 425 55 964.3148 161 616 -0.003 387 380 55 230.3379 153 083 -0.001 819 CCD (26) 426 55 964.4073 161 617 0.003 096 381 55230.4201 153 084 -0.001 290 CCD (26) 427 55 966.2133 161 638 0.002 737 382 55 304 0.002 207 CCD (26) 427 55 966.2133 161 638 0.002 737	CCD	(26)
380 55 230.3379 153 083 -0.001 819 CCD (26) 426 55 964.4073 161 617 0.003 096 381 55230.4201 153 084 -0.001 290 CCD (26) 427 55 966.2133 161 638 0.002 737 282 55 231 2818 153 004 -0.003 207 CCD (26) 428 55 966.2133 161 638 0.002 737	CCD	(26)
381 55230.4201 153 084 -0.001 290 CCD (26) 427 55 966.2133 161 638 0.002 737 282 55 221 2818 153 004 0.002 307 CCD (26) 428 55 966.2133 161 638 0.002 737	CCD	(26)
282 55 221 2818 152 004 0.002 207 CCD (26) 428 55 066 2042 161 620 0.002 280	CCD	(26)
$382 33 \ 251.2818 135 \ 094 -0.005 \ 207 CCD (20) 428 33 \ 900.2942 101 \ 039 -0.002 \ 380$	CCD	(26)
383 55 231.3635 153 095 -0.003 478 CCD (26) 429 55 966.3797 161 640 -0.002 897	CCD	(26)
384 55 259.4108 153 421 0.001 205 CCD (25) 430 55 967.3311 161 651 0.002 315	CCD	(26)
385 55 293.3826 153 816 0.002 087 CCD (25) 431 55 967.4159 161 652 0.001 098	CCD	(26)
386 55 293.4752 153 817 0.003 117 CCD (25) 432 55 968.2773 161 662 0.002 327	CCD	(26)
387 55302.3318 153 920 -0.001901 CCD (25) 433 55 968.3582 161 663 -0.002 790	CCD	(26)
388 55303.3591 153 932 -0.002 918 CCD\ (25) 434 55 969.3038 161 674 -0.003 379	CCD	(26)
389 55304.3959 153 944 -0.003 389 CCD (25) 435 55 969.3959 161 675 0.002 704	CCD	(26)
390 55304.4775 153 945 -0.003 497 CCD (25) 436 55 997.0080 161 996 0.003 317	CCD	(26)
391 55305.3388 153 955 -0.003 207 CCD (25) 437 55 997.0906 161 997 -0.000 100	CCD	(26)
392 55305.4238 153 956 -0.002 804 CCD (25) 438 55 997.1730 161 998 -0.003 717	CCD	(26)
393 55 309.3848 154 002 0.003 579 CCD (25) 439 55 997.2639 161 999 0.001 166	CCD	(26)
394 55 310.4124 154 014 -0.000 238 CCD (25) 440 55 998.0337 162 008 -0.003 188	CCD	(26)
395 55 311.3662 154 025 0.001 291 CCD (25) 441 55 998.1221 162 009 -0.000 805	CCD	(26)
396 55 311.4488 154 026 -0.003 026 CCD (25) 442 55 998.2119 162 010 0.002 977	CCD	(26)
397 55 583.4313 157 188 -0.003 191 CCD (26) 443 55 998.2927 162 011 -0.00 2240	CCD	(26)
398 55 584.3787 157 199 -0.001 979 CCD (26) 444 55 998.9808 162 019 -0.002 276	CCD	(26)
399 55 585.4132 157 211 0.000 316 CCD (26) 445 55 999.0727 162 020 0.003 606	CCD	(26)
400 55 587.3946 157 234 0.003 323 CCD (26) 446 55 999.1547 162 021 -0.000 411	CCD	(26)
401 55 588.4201 157 246 -0.003 383 CCD (26) 447 55 999.2375 162 022 -0.003 628	CCD	(26)
402 55 607.9528 157 473 0.003 437 CCD (26) 448 56 000.0161 162 031 0.000 818	CCD	(26)
403 55 608.0348 157 474 -0.000 580 CCD (26) 449 56 000.0978 162 032 -0.003 499	CCD	(26)
404 55 608.1180 157 475 -0.003 397 CCD (26) 450 56 000.1874 162 033 0.000 084	CCD	(26)
405 55 608.2099 157 476 0.002 486 CCD (26) 451 56 000.2762 162 034 0.002 867	CCD	(26)
406 55 608.2954 157 477 0.001 969 CCD (26) 452 56001.0459 162 043 -0.001 587	CCD	(26)
407 55 608.3763 157 478 -0.003 148 CCD (26) 453 56 001.1368 162 044 0.003 296	CCD	(26)
408 55 610.3591 157 501 0.001 258 CCD (26) 454 56 001.2186 162 045 -0.000 921	CCD	(26)
409 55 611.3877 157 513 -0.002347 CCD (26) 455 56 001.3023 162 046 -0.003 238	CCD	(26)
410 55 612.2469 157 523 -0.003 318 CCD (26) 456 56 062.0312 162 752 -0.002 407	CCD	(26)
411 55 612.3392 157 524 0.002 965 CCD (26) 457 56 063.0691 162 764 0.003 287	CCD	(26)
412 55 613.1980 157 534 0.001 594 CCD (26) 458 56 064.0137 162 775 0.001 699	CCD	(26)
413 55616.9800 157 578 -0.001 158 CCD (26) 459 56 064.0948 162 776 -0.003 218	CCD	(26)
414 55 617.0705 157 579 0.003 325 CCD (26) 460 56 065.0419 162 787 -0.002 306	CCD	(26)
415 55 617.1520 157 580 -0.001 192 CCD (26) 461 56 068.0580 162 822 0.003 196	CCD	(26)
416 55 617.2358 157 581 -0.003 409 CCD (26)		

 $1.30\text{--}2.70\,M_{\odot}$ after the MS and the post-MS (before the red giant phase).

As a result, we got the models that included the frequencies f_0 and f_1 along with the stellar evolution tracks. These tracks provided the relevant intervals of the parameters for subsequent calculations, as listed in Table 10.

With the observations and the method used, one can believe that [Fe/H] and $\log g$ values have good reliability (Strömgren 1956; Crawford & Mander 1966). So, we decide to take the value [Fe/H] = -0.3 in our calculation.

We used the formula (with the solar metallicity $X_{\odot} = 0.7381$, $Y_{\odot} = 0.2485$ and $Z_{\odot} = 0.0134$ from Asplund et al. 2009)

$$[Fe/H] = \log\left(\frac{Z}{X}\right) - \log\left(\frac{Z_{\odot}}{X_{\odot}}\right)$$
(6)

and the formula

$$X + Y + Z = 1 \tag{7}$$

to calculate the initial *Z*. In Girardi et al. (2000), a model was calculated with a couple of values (Y, Z) = (0.25, 0.008), which are in accord with the values in our previous calculation (derived using MESA *astero* with the value of [Fe/H]).

At last, by integrating all the information about the value of (Y, Z), we decide to choose (Y, Z) = (0.25, 0.008521) as the unique initial value for the subsequent calculation.

5.3 Constraints from the period variation

Unlike the solar-like stars for which many frequencies are detected, most HADS are observed with only the fundamental and

Figure 6. O - C diagram of AE UMa. The O - C values are in days. E is the cycle number. The solid curve shows the fit concerning a continuous increasing period change.

Table 8. Physical parameters of AE UMa from Rodriguez et al. (1992) and Hintz et al. (1997b). The $\log (L/L_{\odot})$ value was derived based on $\log (L/L_{\odot}) = 0.4(M_{\text{bol}_{\odot}} - M_{\text{bol}})$.

Parameters	Mean value	Intervals	3σ
[Fe/H]	-0.3	[-0.4, -0.1]	_
$T_{\rm eff}$ (K)	7569	[7150, 8320]	[5980, 9490]
log g	3.90	[3.77, 4.16]	[3.38, 4.55]
M _{bol}	_	[1.53, 1.93]	[1.33, 2.13]
$M(M_{\odot})$	_	[1.75, 1.95]	_
$\log(L/L_{\odot})$	_	[1.16, 1.32]	[1.08, 1.40]

Table 9. The parameters of the grid of model to search for f_0 and f_1 . Since the values of M_{bol} and $\log (L/L_{\odot})$ in Table 6 were calculated from the stellar models of Rodriguez et al. (1992), and from observations, which depended on the models they used, we did not use these values as the constraints during our calculation.

Parameters	Maximum	Minimum	Step
[Fe/H]	-0.1	-0.4	0.05
Initial Y	0.33	0.23	0.02
Mass	2.7	1.3	0.02
$\log T_{\rm eff}$	3.977	3.777	_
log g	4.55	3.38	-

Table 10. The parameters determined with the constraints from f_0 and f_1 . The grid was constructed also within the parameter intervals of T_{eff} and log *g* listed in Table 6. In order to show an obvious comparison of the evolutionary tracks, we calculated the tracks with the stellar mass from 1.30 to 2.30 M_{\odot}.

Parameters	Maximum	Minimum
[Fe/H]	-0.2	- 0.4
Initial Y	0.27	0.23
Mass	2.26	1.32

Table 11. Physical parameters of AE UMa obtained from our calculation.

Parameter	Value	Uncertainty (per cent)
	1.905 0.055	2.04
Mass (M_{\odot})	1.805 ± 0.055 1.055 ± 0.095	3.04
$\log T_{\rm eff}$	3.922 ± 0.01	0.25
Radius (10 ¹¹ cm)	1.647 ± 0.032	1.94
log g	3.9543 ± 0.0044	0.11
$\log L$	1.381 ± 0.048	3.51

the first overtone modes in general (e.g. Balona et al. 2012; Ulusoy et al. 2013). As a result, the period variation becomes a very important constraint on the model calculation of these stars. High-precision detection of period variation may offer strong constraints on AE UMa. We used two independent ways to calculate the period variations of AE UMa theoretically.

5.3.1 Calculation from stellar evolutionary effect

The variation rate of the fundamental period derived from the long time-scale of observations of AE UMa shows a positive period change. From the theoretical point of view, the period changes caused by stellar evolution in and across the lower instability strip permit an observational test of stellar evolution theory (Breger & Pamyatnykh 1998).

The period–luminosity–colour relation can be expressed as (Breger & Pamyatnykh 1998)

$$\log P = -0.3M_{\rm bol} - 3\log T_{\rm eff} - 0.5\log M + \log Q + {\rm constant},$$
(8)

where *P* is the period of a radial mode of pulsation, M_{bol} is the bolometric absolute magnitude, T_{eff} is the effective temperature, *M* is the stellar mass in solar mass and *Q* is the pulsation constant in days. For δ Scuti stars with radial pulsation, the constant is 12.708. For individual stars, the evolutionary period changes over long

Figure 7. Evolutionary tracks of models with mass from 1.30 to $2.30 \,\mathrm{M_{\odot}}$ for (Y, Z) = (0.25, 0.008521). The solid and dashed vertical lines on the Hertzsprung–Russell diagram are determined from the observed $T_{\rm eff}$ in 1σ and 3σ , respectively. The marks on the tracks indicate the models with the values of the evolutionary period changes of $(1/P_0)(dP_0/dt)$ inside the interval $(3.5210 \times 10^{-9}, 7.2448 \times 10^{-9})$ in units of yr⁻¹. Note that the tracks are shown in the diagram with the mass interval of $0.04 \,\mathrm{M_{\odot}}$.

time-scales. An evolutionary change in $T_{\rm eff}$, $M_{\rm bol}$ and M leads to a period change of

$$\frac{1}{P}\frac{dP}{dt} = -0.69\frac{dM_{bol}}{dt} - \frac{3}{T_{eff}} - 0.5\frac{1}{M}\frac{dM}{dt} + \frac{1}{Q}\frac{dQ}{dt}.$$
(9)

Assuming that the stellar mass M = constant for δ Scuti stars during the observation interval with mass in the range of 1.30– 2.30 M_☉ and that the variation of pulsation constant is negligible, Yang et al. (2012) got

$$\frac{1}{P}\frac{\mathrm{d}P}{\mathrm{d}t} \approx -0.69\frac{\mathrm{d}M_{\mathrm{bol}}}{\mathrm{d}t} - \frac{3}{T_{\mathrm{eff}}}\frac{\mathrm{d}T_{\mathrm{eff}}}{\mathrm{d}t}.$$
(10)

As indicated by Rodríguez & Breger (2001), the HADS locate on or near the MS of the Hertzsprung–Russell diagram. Consequently, the evolutionary models are constructed from the pre-MS Hayashi phase to the end of the MS. The effect of rotation was not considered here for mainly two reasons: (1) The HADS typically have slow rotation, and most have a projected rotational velocity, *V*sin *i*, of around 20 km s⁻¹ (see, e.g. Solano & Fernley 1997). (2) The effects of rotation with a speed of *V*sin *i* = 18 km s⁻¹ in HADS are very similar to those in the absence of rotation (Casas et al. 2006).

The evolutionary tracks constructed from 1.30 to $2.30 M_{\odot}$ are shown in Fig. 7, and the corresponding variation rates of the period are marked.

As shown in Fig. 7, the states whose values of period changes are consistent with the observed ones determined from the O - C analysis lie just after the second turn-offs leaving the MSs on the evolutionary tracks.

5.3.2 Calculation from ADIPLS

ADIPLS (the Aarhus adiabatic oscillation package) is a program for the calculation of adiabatic oscillations of stellar models (Christensen-Dalsgaard 2008). We used it to calculate the frequencies of the eigenmodes of the model at each step of our evolutionary state. As a result, we got the frequencies of the model of F_0 and F_1 and

then deduced the variation of those frequencies. In the calculation, the input frequencies F_0 and F_1 are the fundamental and first overtone frequencies with quantum numbers of l = 0 and n = 1, 2, respectively.

We calculated the evolutionary tracks from 1.30 to 2.30 M_{\odot}, and got the frequency values on each tracks, as shown in Fig. 8. Figs 8(a) and (b) show that the models with appropriate frequencies for AE UMa could appear (i) just before the first turn-offs, (ii) after the first and before the second turn-offs and (iii) just after the second turn-offs. We integrated the constraints from f_0 and f_1 and got the results shown in Fig. 8(c).

In addition, we also calculated the variations of the frequencies of the eigenmodes of the models by using ADIPLS. Adding the constraints from $(1/P_0)(dP_0/dt)$, which are thought to be due to the evolutionary effects, we got the results in Fig. 9.

One can find that this result is almost consistent with the result from Fig. 7 just after the second turn-off. The differences arise from the fact that we did not consider the variation of the stellar mass and the pulsation constant along the evolutionary tracks in Fig. 7.

Finally, we combined the constraints from f_0 , f_1 and $(1/P_0)(dP_0/dt)$, and got the results shown in Fig. 10. One concludes that AE UMa should locate after the second turn-offs of the evolutionary tracks leaving the MS. Hence, one finds that the period variations of the fundamental mode of AE UMa are caused by the evolutionary effect. The rate of variation is consistent with the theoretically predicted value by Breger & Pamyatnykh (1998).

With the discussion above and constraints from the physical parameters, one can conclude that the mass of AE UMa ranges from 1.75 to $1.86 \,M_{\odot}$ and the age from 0.96×10^9 to 1.15×10^9 yr.

We chose $1.80 \, M_{\odot}$ as a sample to study the evolutionary state and the interior of the models that we gained. More details of the parameters we got from calculations are listed in Table 11. Fig. 11 shows the distribution of H, He³ and He⁴ versus the stellar radius.

Figure 8. Models with the values of F_0 and F_1 calculated from ADIPLS, consistent with the observed ones $(F_0 \in [f_0 - 3\sigma, f_0 + 3\sigma] \text{ and } F_1 \in [f_1 - 3\sigma, f_1 + 3\sigma])$ are marked on the evolutionary tracks. (a) For $F_0 \in [f_0 - 3\sigma, f_0 + 3\sigma]$; (b) for $F_1 \in [f_1 - 3\sigma, f_1 + 3\sigma]$; and (c) for both $F_0 \in [f_0 - 3\sigma, f_0 + 3\sigma]$ and $F_1 \in [f_1 - 3\sigma, f_1 + 3\sigma]$.

Figure 9. The models for which the period variations of the fundamental mode $(1/P_0)(dP_0/dt)$ calculated with ADIPLS agree with the observed values of $5.3829(\pm 1.8619) \times 10^{-9}$ yr⁻¹ are marked on the evolutionary tracks.

Figure 10. Evolutionary tracks of star models. (a) Marks on the tracks indicate the models with constraints from f_0 , f_1 and $(1/P_0)(dP_0/dt)$. (b) A zoom-in of (a).

Figure 11. Elements' abundance distribution of H, He³ and He⁴ inside the star for the model with the star mass of $1.80 \, M_{\odot}$.

Fig. 12 presents the energy distribution inside the star. From Figs 11 and 12, one may find that the star should have a helium core and a hydrogen-burning shell.

We also calculated models with different values of Y, Z and α_{ov} by using different grids. The result showed that the states were not different significantly. All the results pointed out that AE UMa should lie just after the second turn-off with a helium core and a hydrogen-burning shell.

6 CONCLUSIONS

We analyse the photometric data gathered on AE UMa over 40 nights spanning from 2009 to 2012 and detect 37 frequencies above the so-called 4σ detection threshold, among which 25 frequencies are newly detected. All these frequencies are linked to either harmonics or linear combinations of the two main frequencies $f_0 = 11.625 \,60 \,\mathrm{c} \,\mathrm{d}^{-1}$ and $f_1 = 15.031 \,23 \,\mathrm{c} \,\mathrm{d}^{-1}$, corresponding to the fundamental and the first overtone radial pulsation modes, respectively. No frequencies of the other pulsation modes were detected from the observed data.

An O – C diagram is constructed from a combination of the 84 times of maximum light determined from our new observations and 360 times listed in the literature, leading to the updated value of period $P_0 = 0.086 \,017 \,0781$ d. A new ephemeris with a quadratic solution suggests that the period change rate of the fundamental mode of AE UMa is of $(1/P_0)(dP_0/dt) = 5.4(\pm 1.9) \times 10^{-9} \text{ yr}^{-1}$. The value is different from the result obtained by Zhou (2001) and needs to be confirmed with more data that will be collected from observations in the near future, both from ground and space (e.g. *TESS*; Ricker et al. 2014). Because the large values of the derivative of $(1/P_1)(dP_1/dt)$ were obtained from the standard O – C method, we did not use this value as a constraint in the model calculation.

With the spectroscopic observation data, we got the low-resolution spectrum and used the automated 1D parametrization pipeline LASP to obtain the stellar atmospheric parameters of AE UMa. These parameters (especially the [Fe/H] value of -0.32) certify that AE UMa is a Population I δ Scuti star rather than a Population II SX Phe star.

We then calculated models of stars with masses between 1.30 and $2.70 \,\mathrm{M_{\odot}}$. With the constraints of the values of f_0 , f_1 and $(1/P_0)(dP_0/dt)$, we conclude that AE UMa lies just after the second turn-offs of the evolutionary tracks leaving the MS. The

Figure 12. Energy generation rate distribution inside the star for the model with the star mass of $1.80 \,\mathrm{M_{\odot}}$.

corresponding mass should be $1.805\pm0.055\,M_{\odot}$ and the age $1.055\pm0.095\times10^9$ yr. At this evolutionary phase, the star should have a helium core and a hydrogen-burning shell.

Moreover, according to the concrete observational evidence, we provide an example of the HADS whose evolutionary stage is on the post-MS. This gives a direct support to the general consensus that δ Scuti stars are probably normal stars evolving in the MS or the immediate post-MS stages.

ACKNOWLEDGEMENTS

J-SN and J-NF acknowledge the support from the Joint Fund of Astronomy of National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences through the grant U1231202, the NSFC grant 11673003, the National Basic Research Program of China (973 Program 2014CB845700 and 2013CB834900) and the LAMOST FELLOWSHIP supported by the Special Funding for Advanced Users, budgeted and administrated by the Center for Astronomical Mega-Science, Chinese Academy of Sciences (CAMS). J-SN thanks Nami Mowlavi for helpful discussions and useful advice.

REFERENCES

- Agerer F., Hubscher J., 2003, Inf. Bull. Var. Stars, 5485, 1
- Agerer F., Dahm M., Hubscher J., 1999a, Inf. Bull. Var. Stars, 4712, 1
- Agerer F., Dahm M., Hubscher J., 1999b, Inf. Bull. Var. Stars, 4712, 1
- Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARA&A, 47, 481
- Baglin A., Breger M., Chevalier C., Hauck B., Le Contel J. M., Sareyan J. P., Valtier J. C., 1973, A&A, 23, 221
- Bahcall J. N., 1997, Phys. Rev. C, 56, 3391
- Bahcall J. N., 2002, Phys. Rev. C, 65, 025801
- Balona L. A. et al., 2012, MNRAS, 419, 3028
- Braune W., Mundry E., 1982, BAV Mitt. Nr., 34
- Braune W., Huebscher J., Mundry E., 1979, Astron. Nachr., 300, 165
- Breger M., 1979, PASP, 91, 5
- Breger M., 1980, ApJ, 235, 153
- Breger M., 2000, in Breger M., Montgomery M., eds, ASP Conf. Ser. Vol. 210, Delta Scuti and Related Stars. Astron. Soc. Pac., San Francisco, p. 3
- Breger M., Pamyatnykh A. A., 1998, A&A, 332, 958
- Breger M. et al., 1993, A&A, 271, 482
- Broglia P., Conconi P., 1975, A&AS, 22, 243
- Casas R., Suárez J. C., Moya A., Garrido R., 2006, A&A, 455, 1019
- Christensen-Dalsgaard J., 2008, Ap&SS, 316, 113
- Claret A., Rodriguez E., Rolland A., Lopez de Coca P., 1990, in Cacciari C., Clementini G., eds, ASP Conf. Ser. Vol. 11, Confrontation Between Stellar Pulsation and Evolution. Astron. Soc. Pac., San Francisco, p. 481
- Crawford D. L., Mander J., 1966, AJ, 71, 114
- Ferguson J. W., Alexander D. R., Allard F., Barman T., Bodnarik J. G., Hauschildt P. H., Heffner-Wong A., Tamanai A., 2005, ApJ, 623, 585
- Filatov G. S., 1960, Astron. Nachr., 215, 20
- Fu J. N. et al., 2008b, AJ, 135, 1958
- Fu J.-N., Zhang C., Marak K., Boonyarak C., Khokhuntod P., Jiang S.-Y., 2008a, Chinese J. Astron. Astrophys., 8, 237
- Garcia J. R. et al., 1995, A&AS, 109, 201
- Geyer E., Kippenhahn R., Strohmeier W., 1955, Kleine Veröff, Bamberg, No. 11
- Girardi L., Bressan A., Bertelli G., Chiosi C., 2000, A&AS, 141, 371

- Götz W., Wenzel W., 1961, Mitt. Veränd. Sterne, No. 571
- Herwig F., 2000, A&A, 360, 952
- Hintz E. G., Joner M. D., McNamara D. H., Nelson K. A., Moody J. W., Kim C., 1997a, PASP, 109, 15
- Hintz E., Hintz M. L., Joner M. D., 1997b, PASP, 109, 1073
- Hubscher J., 2005, Inf. Bull. Var. Stars, 5643, 1
- Hubscher J., 2007, Inf. Bull. Var. Stars, 5802, 1
- Hubscher J., Walter F., 2007, Inf. Bull. Var. Stars, 5761, 1
- Hübscher J., Agerer F., Wunder E., 1992, BAV Mitt., Nr., 60
- Hubscher J., Paschke A., Walter F., 2005, Inf. Bull. Var. Stars, 5657, 1
- Hubscher J., Paschke A., Walter F., 2006, Inf. Bull. Var. Stars, 5731, 1
- Hubscher J., Steinbach H.-M., Walter F., 2009, Inf. Bull. Var. Stars, 5874, 1 Hubscher J., Lehmann P. B., Monninger G., Steinbach H.-M., Walter F., 2010, Inf. Bull. Var. Stars, 5918, 1
- Huebscher J., Monninger G., 2011, BAV Mitt., 214, 1
- Huebscher J., Lichtenknecker D., Mundry E., 1985, BAV Mitt., Nr., 39
- Iglesias C. A., Rogers F. J., 1993, ApJ, 412, 752
- Iglesias C. A., Rogers F. J., 1996, ApJ, 464, 943
- Kepler S. O., Castanheira B. G., Saraiva M. F. O., Nitta A., Kleinman S. J., Mullally F., Winget D. E., Eisenstein D. J., 2005, A&A, 442, 629
- Klingenberg G., Dvorak S. W., Robertson C. W., 2006, Inf. Bull. Var. Stars, 5701, 1
- Lenz P., Breger M., 2005, Commun. Asteroseismol., 146, 53
- Niu J.-S., Fu J.-N., Zong W.-K., 2013, Res. Astron. Astrophys., 13, 1181
- Paxton B., Bildsten L., Dotter A., Herwig F., Lesaffre P., Timmes F., 2011, ApJS, 192, 3
- Paxton B. et al., 2013, A&AS, 208, 4
- Pejcha O., Havlik T., Kral L., 2001, Inf. Bull. Var. Stars, 5080, 1
- Petersen J. O., Christensen-Dalsgaard J., 1996, A&A, 312, 463
- Pócs M. D., Szeidl B., 2001, A&A, 368, 880
- Poretti E., 2003, A&A, 409, 1031
- Pringle J. E., 1975, MNRAS, 170, 633
- Ricker G. R. et al., 2014, in Oschmann J. M. Jr., Clampin M., Fazio G. G., MacEwen H. A., Proc. SPIE Conf. Ser. Vol. 9143, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave. SPIE, Bellingham, p. 914320
- Rodríguez E., Breger M., 2001, A&A, 366, 178
- Rodríguez E., López-González M. J., 2000, A&A, 359, 597
- Rodriguez E., Rolland A., Lopez de Coca P., Garcia-Lobo E., Sedano J. L., 1992, A&AS, 93, 189
- Rogers F. J., Nayfonov A., 2002, ApJ, 576, 1064
- Samolyk G., 2010, J. Am. Assoc. Var. Star Obs., 38, 12
- Saumon D., Chabrier G., van Horn H. M., 1995, ApJS, 99, 713
- Seaton M. J., 2005, MNRAS, 362, L1
- Solano E., Fernley J., 1997, A&AS, 122
- Strömgren B., 1956, Vistas Astron., 2, 1336
- Szeidl B., 1974, Inf. Bull. Var. Stars, 903, 1
- Tsesevich V. P., 1973, Astronomicheskij Tsirkulyar, 775, 2
- Ulusoy C. et al., 2013, MNRAS, 433, 394
- Wenger M. et al., 2000, A&AS, 143, 9
- Wu Y. et al., 2011, Res. Astron. Astrophys., 11, 924
- Yang X. H., Fu J. N., Zha Q., 2012, AJ, 144, 92
- Zhou A.-Y., 2001, A&A, 374, 235
- Zhou A.-Y., Jiang X.-J., Zhang Y.-P., Wei J.-Y., 2009, Res. Astron. Astrophys., 9, 349
- Zong W. et al., 2015, AJ, 149, 84

This paper has been typeset from a TEX/LATEX file prepared by the author.